Developing caching techniques using Collaborative Filtering methods in 5G Networks

Farnaz Hassanzadeh farnaz.hassanzadeh@metu.edu.tr

Wireless Systems, Networks and Cybersecurity Laboratory
Department of Computer Engineering
Middle East Technical University
Ankara Turkey

December 14, 2017

Outline of the Presentation

Introduction

Background

CF Caching

SDN

Future Works

References

Motivation

In fifth generation (5G) networks, increasing the number of mobile users and devices will increase the information that they exchange between each other. As a result, not only finding an appropriate information is time consuming and confusing, but also retrieving the requested information without any delay is impossible.

Objective

- ▶ There should be some mechanisims to help users investigate through the information and figure out the most proper one, based on their prefrences (Collaborative Filtering Algorithms).
- ▶ There should be some ways to lower the end-to-end latency (Caching).

CF caching

- ► Generating automatic predictions based on user's preferences and similar information from other users
- Storing the predicted information in the caches which are located close the users

Technical Issues Related to Caching

▶ Where to cache?

	EPC	RAN
Hit ratio	Higher	Lower
Ease of Maintenance	Higher	Lower
Relaxing Backhaul Links	No	Yes
Decrease in Latency	Lower	Higher

- ▶ What to cache? popular contents, predicting future request, . . .
- ▶ What to release? FIFO, LFU, LRU, . . .

Technical Issues Related to Caching (Related Works)

Caching methods	Advantages	Disadvantage
Web caching	content aware using URL decrease end-to-end latency	cannot avoid duplicate transmission of same content with different URLs temporary content cannot be cached
Byte caching	save prominent amount of bandwidth decrease end-to-end latency can be applied to all types of Internet traffic	not proactive
P-UPP	proactive decrease end-to-end latency	request coming from a user cannot signal another request that will come in a small amount of time
Marcov based prefetching	 proactive if use higher order models, have had accurate predictions 	cannot predict the first request
Semantic caching	proactive decrease end-to-end latency	generating additional data traffic
	 able to smartly predict subsequent user requests employing in MEC 	 based on single user's previous requests

Technical Issues Related to Collaborative Filtering

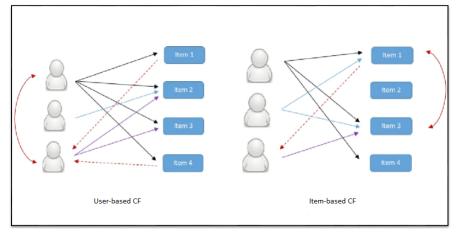


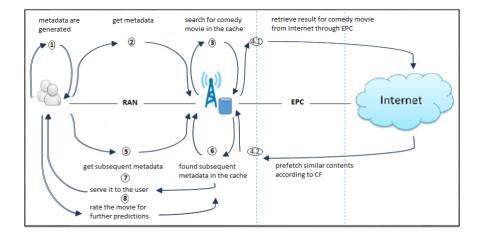
Figure: Memory and model based CF

Technical Issues Related to Collaborative Filtering

Challenging issues related to user-based CF algorithms

- dealing with large amount of sets
- ► sparse data base
- scalability

Technical Issues Related to Collaborative Filtering


Item-based CF algorithms

- Jaccard
- Cosine
- ► Centered Cosine (Pearson correlation)

$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \overline{R_i})(R_{u,j} - \overline{R_j})}{\sqrt{\sum_{u \in U} (R_{u,i} - \overline{R_i})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \overline{R_j})^2}}$$

$$P_{u,i} = \frac{\sum_{similaritems,N} (S_{i,N} * R_{u,N})}{\sum_{similaritems,N} |(S_{i,N})|}$$

Example scenario

WH-NS

SDN

SDN architecture

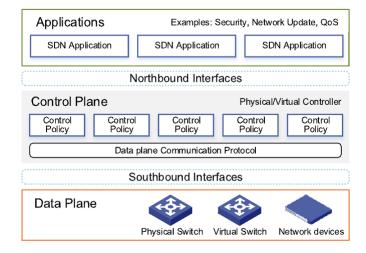


Figure: Software Defined Network architechture

Network Slicing

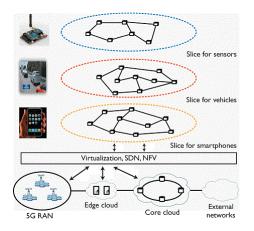


Figure: Network Slicing

Future Works

- ▶ Implementing the example scenario based on SDN architecture
- ▶ Optimize the performance of the network by optimization problems

References

- Mael Kimmerlin, Jose Costa-Requena, and Jukka Manner. Caching using software-defined networking in LTE networks. 2014 IEEE International Conference on Advanced Networks and Telecommunication Systems, ANTS 2014, pages 1–6, 2014. doi: 10.1109/ANTS.2014.7087253.
- Xin Li, Mohammed Samaka, H. Anthony Chan, Deval Bhamare, Lav Gupta, Chengcheng Guo, and Raj Jain. Network Slicing for 5G: Challenges and Opportunities. *IEEE Internet Computing*, 21(5):20–27, 2017. ISSN 10897801. doi: 10.1109/MIC.2017.3481355.
- Can Mehteroglu, Yunus Durmus, and Ertan Onur. Semantic edge caching and prefetching in 5G. 2017 14th IEEE Annual Consumer Communications and Networking Conference, CCNC 2017, pages 692–695, 2017. doi: 10.1109/CCNC.2017.7983215.
- White Paper and Software Networks Wg. Vision on Software Networks and 5G SN WG January 2017 (final version 2.0). 2017 (January), 2017. URL https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP{_}SoftNets{_}}Wf[__}whitepaper{_}vv20.pdf.
- Ritu Sharma, Dinesh Gopalani, and Yogesh Meena. Collaborative Filtering Based Recommender System: Approaches and Research Challenges. *IEEE*, pages 1–6, 2017.

Questions

THANK YOU

Developing caching techniques using Collaborative Filtering methods in 5G Networks

presented by Farnaz Hassanzadeh farnaz hassanzadeh@metu.edu.tr

December 14, 2017

