978-1-5386-4128-6/18/$31.00 ©2018 |EEE

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

An Analysis and Empirical Study of Container Networks

Kun Suo*, Yong Zhao*, Wei Chen’ and Jia Rao*
*Department of Computer Science and Engineering, the University of Texas at Arlington
TDepartment of Computer Science, the University of Colorado, Colorado Springs
Email: kun.suo@uta.edu, yong.zhao@uta.edu, cwei@uccs.edu, jia.rao@uta.edu

Abstract—Containers, a form of lightweight virtualization,
provide an alternative means to partition hardware resources
among users and expedite application deployment. Compared
to virtual machines (VMs), containers incur less overhead and
allow a much higher consolidation ratio. Container networking, a
vital component in container-based virtualization, is still not well
understood. Many techniques have been developed to provide
connectivity between containers on a single host or across multiple
machines. However, there lacks an in-depth analysis of their
respective advantages, limitations, and performance in a cloud
environment.

In this paper, we perform a comprehensive study of repre-
sentative container networks. We first conduct a qualitative com-
parison of their applicable scenarios, levels of security isolation,
and overhead. Then we quantitatively evaluate the throughput,
latency, scalability, and startup cost of various container networks
in a realistic cloud environment. We find that virtualized network
in containers incurs non-negligible overhead compared to physical
networks. Performance degradation varies depending on the type
of network protocol and packet size. Our experiments show that
there is no clear winner in performance and users need to select
an appropriate container network based on the requirements and
characteristics of their workloads.

I. INTRODUCTION

While an increasing number of applications are being deployed
in the cloud, the overhead of virtualization remains a criti-
cal concern. Traditional virtual machines (VMs) operate on
virtualized hardware and run a complete copy of operating
system (OS). The large footprint of full-fledged OSes limits
the number of VMs that can be consolidated on a single
machine and the long OS startup time makes it expensive
for VMs to host short-lived applications. Container-based
virtualization addresses these issues by sharing OS libraries
and the kernel among applications, each of which runs in
an isolated namespace, a.k.a., container. Studies have shown
that containers incur negligible overhead and achieve near-
native performance [21], [28], and take much less space [20].
Containers can be launched within a second and are ideal for
hosting event-driven microservices [19], [25]. As a result, a
single machine is expected to host hundreds or thousands of
frequently launched and terminated containers. For example,
Google Search launches about 7,000 containers every sec-
ond [2] and a survey of 8 million container usage shows that
27% of containers have a lifetime shorter than 5 minutes and
11% shorter than 1 minute [16].

Providing network connectivity to a large volume of short-
lived containers in a dynamic cloud environment presents a
great challenge. First, the flexibility of OS-level virtualization
allows multiple ways to connect a container to the external

189

Container on top of VM &xx3

s 12
Q
E 1w B TR =8 e B B B B
e osl M EEE R N N N N
kS < ;
S o - E -
1) b
oo B KR 3
T o2 I
LI — To Up T U
Com, Copy, ScajeAdg Trig Cp UDp TCp UDp
limgPltatio, Y e TG m (m
FCPUH ——— Memory —— F——— Network ——
Fig. 1: CPU, memory, and network performance in VM

and container on top of VM. Here (s) and (m) denote the
performance on a single VM and multiple VMs, respectively.

world. For example, there are four networking modes to
interconnect Docker [3] containers on the same host and
various ways to connect containers across machines. It is
difficult to determine the appropriate network for a particular
container workload. Second, the high density of containers on a
single server requires that the network incurs minimal network
performance degradation to individual connections as well as
scaling to a large number of connections. Third, containers
are not available for use until inter-container connections are
established. Although a container can be started with sub-
second latency, the time to establish its network can add
considerable delays to the overall container launch time. Such
delays are harmful to on-demand, short-lived container appli-
cations, such as event-triggered serverless code [22], [34]. Last,
containers provide less security isolation than VMs. Thus, most
cloud providers, e.g., Amazon Web Services, run containers
inside VMs. The interaction between container network and
the underlying VM network is not well understood.

Many studies revealed that containers incurred negligible
overhead. To study the overhead of containerization in the
cloud, we compared the performance of different types of
applications in two settings. The baseline is to run applications
directly in a VM. In contrast, containerization runs applications
in a Docker container on top of a VM. we used a synthetic
CPU benchmark that executed 100 million times calculation,
Stream [15] and Sockperf [13] to measure the CPU, mem-
ory and end-to-end TCP and UDP throughput, respectively.
Figure 1 shows that containerization does not degrade the
performance of compute- and memory-intensive workloads
in virtualized environments. However, network throughput
drops dramatically when applications communicate through
the container network compared to communicating directly via
the VM network. Note that we used the default networking
modes in Docker for the single VM and multiple VMs tests.
In the baseline setting, both the client and server were separate
processes and they communicated through the loopback net-

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Cloud Network on a single host Network on multiple hosts
A Bridge (Default) NAT (Default)
mazon
EC2 None . Overlay .
Host Third party solutions
Bridge (Default)
]?j(l)(c)ﬁfir C(f\rz?;iier Overlay (Default)
Host
NAT (Default) NAT (Default)
Microsoft Transparent Transparent
Azure Over_lay Over_lay
L2Bridge L2Bridge
L2Tunnel L2Tunnel

TABLE I: Available container networks in the public clouds.

work interface in the single VM case and through the VMs’
IP addresses in the multiple VMs case. In contrast, when
the client and server ran in separate containers on top of
VMs, their communications occurred through an additional
abstraction of container network, which caused significant
network performance drop.

As networking performance is important to the user ex-
perience in containerized applications, it is critical to select
the right network for containers. Unfortunately, this is not an
easy task because many techniques have been developed to
virtualize the network stack in the host OS to create isolated
network for individual containers. Table I lists the available
container networks in three public clouds. Broadly speaking,
container networks fall into two categories: single-host net-
work and multi-host network. Since communications within
the same host are in fact carried out through shared memory,
single-host network is mainly to provide a networking interface
to containerized applications. Multi-host network centers on
providing IP addressing services, such as network address
translation (NAT), overlay network, or routing, to interconnect
containers on different hosts.

In this paper, we present a detailed analysis of available
container networks in Docker and perform an empirical study
of their performance. We first investigate container networks
on a single host and analyze their differences and use cases
(§ II). Then we study container networks on multiple hosts,
and analyze their techniques, respective advantages and disad-
vantages (§ III). We use representative benchmarks to evaluate
the performance, scalability, and overhead of container net-
works (§ IV), and review the related work (§ V). Finally, we
summarize this paper with insights and conclusion (§ VI).

To summarize, this paper has the following findings:

e Performance and security isolation present a difficult
tradeoff in container networks on a single host. Good
performance can be attained by sharing the same
network namespace while security is enforced by
using isolated namespaces.

e Multi-host networks present a different tradeoff. Over-
lay networks incur significant overhead due to packet
encapsulation and decapsulation but allows more flex-
ibility and security in network management. NAT and
host mode networking achieves good performance but
undermines security. Routing network shows good
performance but requires additional support.

e Container network alone impose certain overhead.
However, its deployment in VMs incurs additional

190

none bridge bridge container host
E lm] [(mem] | =
[
| Docker0 = =] |
| Physical device =] e
= loopback = ethernet = vethernet namespace

interface interface interface

Fig. 2: Four container networking modes on a single host.

throughput loss and latency increase. This is due to
complex interactions between container networks and
the virtualized network stack in VMs.

e Container networks have an order of magnitude differ-
ence in startup times. Short-lived and latency-sensitive
workloads should take the startup time into consider-
ation when selecting a container network.

II. CONTAINER NETWORK ON A SINGLE HOST

In this section, we introduce four container networking modes
on a single host, compare their differences, and discuss the
use cases. Some of these networking modes are the basis for
container networks on multiple hosts.

None mode The none network sets the container to a closed
network stack. Such containers only have the loopback in-
terface and cannot connect to containers on the same host
or external networks. However, it achieves a high degree of
isolation and security, and is suitable for services that do not
require network access, such as offline data computation, batch
processing, backup jobs, etc.

Bridge mode The bridge networking is the default network
setting of Docker containers on a single host. As shown in
Figure 2, Docker creates a bridge named docker0 in the host
OS once the Docker daemon dockerd is launched. When a
new container is started, a pair of veth ports are created to
connect the container to docker0. All containers connecting
to Docker0 belong to one virtual subnet and can communicate
with each other using private IP addresses. Bridge mode alone
does not connect containers to external networks and relies
on other services, such as NAT and overlay, for inter-host
communication. Bridge mode allows each container to own an
isolated network namespace and an IP address, and all inter-
container communications need to go through the docker0
bridge. Packet transmission on the same host between con-
tainers needs to invoke the packet send and receive paths in
isolated network namespace, thereby leading to high commu-
nication overhead. On the other hand, separating containers in
independent network namespaces provides a moderate degree
of security.

Container mode As shown in Figure 2, the container mode
involves multiple containers, which share one network names-
pace. Within a group, one container is designated as a proxy
and configured with the bridge mode. Other containers of the
group connect to the external network through the proxy’s
virtual Ethernet (veth) interface. Since all containers in a
group share one network namespace, only one IP address is
assigned to the group and individual containers are identified

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

[Network | Intra-machine communication Inter-machine communication | Access to external networks | Namespace [Security]
None / / / Independent, isolated High
Bridge docker0 bridge / Bind host port, NAT Independent, isolated Moderate

Container | Inter-process communication / Bind host port, NAT Shared with group leader Medium
Host Host network stack Host network stack Host network stack Shared with the host OS Low

TABLE II: Summary of four container networking modes on a single host.

by the group IP plus a port number. The container mode is
widely adopted in many container management frameworks.
For example, a pod in Kubernetes is a group of containers
that share the same network namespace and an IP address.
Containers with the container mode network can communicate
with each other using standard inter-process communications
(IPC). The container mode incurs less communication over-
head than the bridge mode and achieves a medium level of
security. While containers that belong to different groups are
isolated, those in the same group do not have any protection
from each other. Therefore, the container mode is most suitable
for containers belonging to the same user. However, compared
to the bridge mode, it does not allocate an IP address for
each container. When a large-scale container deployment spans
multiple machines, the user bears the burden to implement a
hybrid communication scheme with both IPC and IPs.

Host mode The host networking allows all containers on the
same host to share the network namespace of the host OS. As
such, all containers are visible to each other and inter-container
communications are based on IPC. The host mode provides the
lowest level of security among the four networking modes [18]
as all users share the same IP address as well as the namespace
of the host machine.

[Summary] Table II summarizes the characteristics of the four
networking modes on a single host. From the top to the bottom,
the network becomes more efficient, whereas the degree of
security isolation declines.

III. CONTAINER NETWORK ON MULTIPLE HOSTS

Host mode As discussed in Section II, containers in the host
mode share the network stack and namespace of the host OS.
Thus, two host mode containers on different machines can
easily communicate with each other like two processes using
the IP addresses of the machines. Although host mode network
is straightforward to configure, only two host mode containers
can communicate. For example, a bridge mode container can
send packets to a host mode container on a different host
using the destination host’s IP address, but not vice versa.
Furthermore, the host mode does not enforce security isolation
between containers on the same host.

Network address translation (NAT) is the most commonly
used technique in multi-host container network prior to Docker
1.9. NAT maps a container’s private IP address to its port
number in the NAT table. Communications must use host
machines’ public IP addresses plus a port number to identify a
particular container. When a packet is sent by a container, the
host machine at the source remaps the container’s private IP
address to the host’s public IP address and changes the packet
header. The destination host machine uses the port number in
a received packet to map to the destination container’s private
IP address. Both the sender and receiver side translations are
performed at bridge docker0.

191

NAT is a simple means to realize container connectivity
across different hosts. It does not need complex configurations
or the support of third-party software. In addition, as NAT
allows containers to be addressed using the IP address of
their host machine, it does not need a large number of public
IP addresses for large-scale container deployment. However,
network address translation at every packet sending and re-
ceiving incurs overhead and leads to some performance loss.
Such overhead may not be neglected when a high density of
containers rely on NAT [21] or the containerized applications
are sensitive to performance degradation. Another limitation of
NAT is that containers’ public IP addresses are bound to their
host IPs, making it difficult to implement dynamic container
networks. In a dynamic network with short-lived containers,
avoiding port conflicts in NAT is also a challenge.

Overlay network An overlay network runs on top of another
network to build customized virtual links between nodes.
Common forms of overlay network include IPIP, virtual ex-
tensible LAN (VXLAN), virtual private network (VPN), etc.
There exist many overlay networks for Docker containers.
Although they differ in implementation, the key idea is similar.
Containers save the mapping between their private IP addresses
and their host IP in a key-value (KV) store, which is accessible
from all hosts. Containers use private IP addresses in a virtual
subnet to communicate with each other. The overlay inserts an
additional layer in the host network stack. When a packet is
sent by a container, the overlay layer looks up the destination
host IP address in the KV store using the private IP address of
the destination container in the original packet. It then creates
a new packet with the destination host IP address and uses
the original packet sent by the container as the new packet’s
payload. This process is called packet encapsulation. Once the
encapsulated packet arrives at the destination host, the host
network stack decapsulates the wrapped packet to recover the
original packet and delivers it to the destination container using
the container’s private IP address.

Compared to NAT, overlay network provides isolated ad-
dress spaces and allows containers to communicate using
private IP addresses. It is also easier to manage and resilient to
changes in network topology. However, overlay network has
two drawbacks. First, packet encapsulation and decapsulation
are expensive operations and prolong the critical path of
the network stack. Second, packet encapsulation changes the
original packet size. When the underlying network is limited
by a maximum transmission unit (MTU), the space overhead
of packet encapsulation can increase the number of packet to
be transmitted because the new packet may not fit in the MTU.

(a) The Docker’s native overlay network is available since
Docker 1.9 and has been the default network solution across
multiple machines. As shown in Table III, Docker’s overlay
network adopts a VXLAN bridge to connect containers on
the same host. The overlay network is built on libkv [8]

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Docker Calico
overlay Weave Flannel (IPIP)
Container Container Container Container
Container interface interface interface interface
eth0 ethwe ethO cali0
Weave
. VXLAN bridge Docker Docker
Bridge . bridge bridge
bridge br0 vethwe-
. docker0 docker0
bridge
Overlay VXLAN Weave VXLAN VXLAN
network backend routZr backend backend
device vxlanl flannel0 tunlQ
Physical NIC NIC NIC NIC
deyvice interface interface interface interface
ethO ethO ethO ethO

TABLE III: The network hierarchy in container overlay net-
works.

and libnetwork [9] and uses VXLAN to implement container
connectivity across multiple hosts. The overlay network is the
default network of Docker Swarm [4] and Docker provides
extensive API support to configure the overlay. Before the
native overlay support in Docker, many third-party solutions
have been proposed. Here we discuss some most widely
adopted solutions.

(b) Weave [17] is a virtual network solution developed by
Weavework. Weave deploys a weave router container on each
Docker host and the weave network is composed of these
connected weave routers. The communications among weave
routers can be encrypted using the NaCl crypto libraries [10]
to enhance the data security. Weave creates a network bridge,
vethwe-bridge, on each host to connect containers and
the weave router. On the sender side, when a packet leaves a
container, the weave router in the host captures this packet in
promiscuous mode using pcap. It excludes the local traffic and
forwards the packet to the weave routers on a remote host. On
the receiver side, the weave router also uses pcap to transfer
packets to the bridge and then forwards packets to destination
containers. The weave router is implemented as a user-level
service and handles packet encapsulation and decapsulation.
As such, the overhead of building an overlay using weave also
includes the cost to copy packets between kernel space and
user space.

(¢c) Flannel [7] is a virtual network developed by CoreOS.
In Docker native overlay, the Docker daemons on individual
hosts allocate private IP addresses to containers independently.
IP conflicts could occur when multiple containers on different
machines are placed into the same overlay. Therefore, in
Docker the overlay network is first created and containers
are later added to the overlay to avoid IP conflicts. One
major drawback of this approach is that the overlay cannot be
dynamically created for already running containers as there is
no way to address the potential IP conflicts. Flannel addresses
this issue by ensuring that all containers on different hosts
have different IP addresses. To achieve this, flannel restricts
all containers on one host to the same subnet and allocates
different subnets for different hosts. As such, overlay networks
can be dynamically reconfigured as no IP conflicts would
occur. Flannel maintains a distributed KV store, etcd [6], to
store information about overlays and their address mappings.
It inserts a virtual network interface, £lannel0, between
bridge dockerO and the physical Ethernet device. Packet

192

encapsulation and decapsulation are performed at f1annel0.
Flannel supports encrypted communication through Transport
Layer Security (TLS) to secure the traffic.

(d) Calico [1] is a scalable and efficient virtual network
developed by Tigera. It provides two options for container
connectivity across multiple hosts: the IPIP overlay and Border
Gateway Protocol (BGP) routing. The latter will be discussed
in the following routing networks. Different from the stated
overlay networks, which use either UDP or VXLAN packets
for packet encapsulation, IPIP encapsulates packets at the
network (IP) layer. The original IP packet is wrapped in
another IP packet at the source of a network tunnel (i.e.,
tunl0) and decapsulated at the destination side of the tunnel.
While Calico share the same drawback of expensive encapsu-
lation and decapsulation, it imposes one additional limitation.
It also requires the underlying infrastructure to support the
IPIP protocol. However, many cloud providers, e.g., Microsoft
Azure, do not support IPIP yet.

Routing Overlay networks offer a logical network connection
between containers through creating a virtualized network
layer on top of another network. Besides high overhead,
overlay networks also make packet monitoring difficult as the
real packet is encapsulated. To addresses these issues, Calico
provides an alternative approach for inter-machine communi-
cation. It implements a virtual router in the host kernel and uses
BGP for packet routing. As a network layer solution, Calico
does not incur as much overhead compared to NAT and overlay
network. Nevertheless, it has several limitations. First, Calico
only supports a limited number of network protocols, such
as TCP, UDP, ICMP, which limits its applicability. Second,
BGP is not yet widely supported in data center networks.
For instance, BGP cannot cross the zone boundaries in public
clouds, Third, the size of the routing table limits the scale
of a container network. It is also expensive to update routing
information in BGP for highly dynamic networks with short-
lived containers. Calico supports TLS to encrypt the network
traffic between the etcd cluster and Calico components.

[Summary] Table IV summarizes available container networks
on multiple hosts. Host mode networking is simple and fast,
but sacrifices security and isolation. NAT is easy to use but
containers’ IP addresses are bound to host IPs, which poses
challenges in port management and limits flexibility in network
management. Table III summarizes the structures of various
overlay networks. Overlay networks provide good isolation
and security, but incur various degrees of overhead for per-
packet processing. Further, all discussed overlays except weave
rely on a cluster-wide KV store for private-public address
mapping. This not only becomes a single point of failure but
also imposes delays to container launch time. Routing is more
efficient than overlay networks, but it only supports a subset
of network protocols and requires the underlying infrastructure
to support BGP.

IV. THE PERFORMANCE OF CONTAINER NETWORKS

This section presents a performance evaluation of the discussed
container networks. We first evaluate the networking modes on
a VM and multiple VMs using different protocols and various
packet sizes, and then we study the impact of virtualization
on container network performance. Last, we evaluate how

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Network [How it works Protocol [KV store | Security
Host mode Sharing host network stack and namespace ALL No No
NAT Host network port binding and mapping ALL No No
Docker overlay VXLAN ALL Yes No
Overlay Weave VXLAN or UDP ALL No Encrypted
Flannel VXLAN or UDP ALL Yes Encrypted
Calico (IPIP) IP in IP TCP/UDP/ICMP/ICMPv6/SCTP/UDPlite Yes Encrypted
Routing | Calico (BGP) Border Gateway Protocol TCP/UDP/ICMP/ICMPv6/SCTP/UDPlite Yes Encrypted

TABLE IV: Summary of container networks on multiple hosts.

(a) Sparkyfish throughput
1.2 2000

(b) Sockperf throughput

1500 [—--[rqf|----------
w/o container ===
bridge ==
container ==
host ===

1000 |— - -

Throughput relative
to the w/o container
o
o
l
Throughput (MBps)

Upload Download TCP UDP

(c) OSU benchmark bandwidth
1e+04 p————mmmm88™8 8 ™
1e+03 |
1e+02 |
1e+01 |- - -
1e+00 |- <-
1e-01 &

1e+02

1401 o rs m e £l

T E E—E—E—E—E/E’E w/o container g
L _ | bridge

1e+00 M container ——

1601 - host ¢

Latency (us)

Bandwidth (MBps)

teop bl L 1 1 1 | |
1 4 16 64256 1k 4k

Packet size (Byte)

1 4 16 64 256 1k 4k
Packet size (Byte)

Fig. 3: Container network performance in a single VM.

different container networks respond to interference, their
overhead in terms of CPU consumption, and the scalability.
If not otherwise stated, we run containers in VMs to emulate
a container hosting environment in public clouds.

A. Experiment settings

Hardware Our experiments were performed on two DELL
PowerEdge T430 servers, connected by Gigabit Ethernet. Each
server is equipped with a dual ten-core Intel Xeon E5-2640
2.6GHz processor, 64GB memory, and a 2TB 7200RPM SATA
hard disk. Simultaneous multithreading (SMT) was disabled to
reduce variability across multiple experiment runs.

Software We used Ubuntu 16.10 and Linux kernel 4.9.5 as the
host and guest OS. The hypervisor was KVM 2.6.1 and the
Docker version was Community Edition 1.12. The VMs are
assigned with default rt18139 NIC drivers. The overlay network
software we used were efcd 2.2.5, weave 1.9.3, flannel 0.5.5
and calico 2.1.

Benchmarks We selected the following benchmarks to mea-
sure the performance of container networks.

e Netperf [11] is a network benchmark which provides
unidirectional throughput and end-to-end latency mea-
surement. The version we used was 2.7.0.

o Sockperf [13] is a network benchmarking utility over
socket API that is designed for testing performance
(latency and throughput) of high-performance sys-
tems. The version we used was 2.8.

e Sparkyfish [14] is an open-source network bandwidth
and latency tester. Sparkyfish uses TCP streams to test
the performance of bulk download and upload. The
version we used was 1.2.

e OSU benchmarks [12] is a suite of benchmarks that
measure the performance of Message Passing Interface
(MPI) applications. The version we used was 5.3.2.

193

o 2

© w/o container =m
5 15 host-mode ==
o NAT ==
L 1 def-overlay ==
i weave
= flannel =3
2 o5 calico(IPIP) ==
® calico(BGP) ==
& 0

TCP throughput Avg latency

Fig. 4: Container network performance in multiple VMs.

B. Experiment results

Containers in a single VM We first compare point-to-point
network performance in a single VM. The VM was configured
with 4 vCPUs and 4GB memory. The benchmarks we used
include a client and a server. As a comparison baseline,
we ran the client and server as separate processes in the
same VM (denoted as w/o container). Figure 3 (a) shows the
performance of bulk network upload and download bandwidth
using Sparkyfish. All container networks except the bridge
mode achieved close performance to the baseline. In contrast,
the bridge mode network incurred 18% and 30% throughput
loss in upload and download, respectively. Figure 3 (b) shows
TCP and UDP throughput of Sockperf in various modes.
The packet size was set to 1024 bytes. Similarly, the bridge
mode caused even more significant performance loss for TCP
and UDP while other networking modes did not incur much
overhead. Next, we used osu_bw and osu_latency to test
network throughput and latency using various packet sizes.
Likewise, the container mode and host mode achieved close
performance to the baseline across all packet sizes. However,
the bridge mode caused about 10-fold throughput loss and
latency hike in all tests.

One commonality among the baseline, the container mode
and the host mode is that they all share one network names-
pace. The baseline and the host mode share the network stack
in the host OS while containers in the container mode share the
proxy container’s namespace. As such, inter-container commu-
nications in these modes were performed at the loopback inter-
face and in fact were carried out through IPC. In comparison,
bridge mode containers had separate network namespaces and
all communications needed to go through bridge dockerO.
The additional layer in the network stack introduces two
sources of overhead. First, it prolongs the critical path of
packet processing. Packets need to be transmitted through
docker0, leading to a traversal of the send and receive paths
in the network stack as well as invoking an additional softirq
for the bottom half of the receive interrupt handler. Second,
it consumes more CPU resources and could impose queuing
delays if CPU becomes the bottleneck.

Containers in multiple VMs To evaluate container network

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

250
I8 w/o container ==

Q200 hostmode B - - - - - - - oo
=3 NAT ==

3 150 def-overlay B3 . . . _......
2 weave =1

=2 flannel =

3 100~ calico(IPIP) =

£ calico(BGP) =3

o 500pF-------"--------

O

Fooy A ’_mTH'H

16 32 64 128 256 512 1024
Packet size (Byte)

Fig. 5: TCP throughput in different packet sizes.

across multiple hosts, we used two VMs on the same PM. This
setting allows for a much higher inter-VM link speed than the
physical 1Gbps Ethernet link. Each VM was configured with 4
vCPUs and 4GB memory. We pinned vCPUs of the two VMs
to separate cores to avoid any interference between the two.
Sockperf was the benchmark and the packet size was set to 256
bytes for the TCP throughput test and 16 bytes for the TCP
latency test. As shown in Figure 4, compared to the baseline
(i.e., w/o container), the host mode network achieves almost
the same throughput and average latency. Both NAT and Calico
(BGP mode) incurred considerable performance degradation.
This was due to the overhead of address translation and packet
routing. However, all overlay networks caused unexpectedly
high performance loss. For example, Docker native overlay
inflicted 82.8% throughput drop and 55% latency increase
compared to the baseline. Overall, packet encapsulation and
decapsulation are more expensive than NAT and routing. As
previously discussed, the bridge mode introduces additional
network processing and all overlay networks require the con-
tainers to connect to the network bridge. Moreover, packet
processing needs to traverse the network stack back and forth
in overlay networks. For instance, packet decapsulation is
invoked when the host OS processes an overlay packet at the
transport layer (layer 4) and finds an enclosed packet. The
recovered packet is then transmitted to the Ethernet interface
and packet processing starts over from the receive interrupt
handler. Later, the packet has to go through the protocol stack
again when transmitted to the container via network bridge.

Packet size Packet size plays an important role on the network
performance [24], [32]. Given a sustained data rate, a large
packet size results in fewer packets being transmitted; given
a fixed packet rate, a large packet size leads to a higher data
rate. We used Sockperf to measure TCP and UDP throughput
across two VMs on the same machine. Sockperf employs an
open loop control flow at the sender side and sends a fixed
number of packets. Thus, increasing the packet size increases
the data rate. Figure 5 and Figure 6 show that both the baseline
w/o container and the host mode scaled well with the data rate
under TCP and UDP. However, NAT and Calico (BGP mode)
incurred some overhead compared to the baseline but did
scale the overall throughput. In contrast, all overlay networks
suffered significant throughput loss. Under TCP, overlays were
unable to scale as the packet size increases. Under UDP, the
throughput of overlays scaled but with considerable loss. As
previously discussed, packet encapsulation and decapsulation
require more processing resources for each packet and a single
packet of MTU size can hold more packets with smaller size,
thereby leading to higher CPU consumption for larger packet
size. We measured the CPU consumption of the VM at the
receiver side, the single-stream TCP and UDP tests overloaded

194

80
d 70| wocontainer B_._._.
[} host-mode ==

2 60 - (7 ==
5 50 [def-overlay B - - - - - - - - c---ooo- - ooocooo oo
g bk weave T . _____________.

=4 flannel =3

o 30 calico(IPIP) =3 - - - - - - - oo

f 20 |- calicoBGP) =3 _ _ . . _ ... ____.__] R

[11

2) - el o meckeen (bl

16 32 64 128 256 512 1024
Packet size (Byte)

Fig. 6: UDP throughput in different packet sizes.

one vCPU in the 4-vCPU VM. However, the SMP VM was
unable to parallel the packet processing using multiple vCPUs.
An overlay packet requires multi-step processing, including
packet decapsulation, interrupt handling for decapsulated pack-
ets, and packet forwarding on bridge docker0. However, the
network stack is unaware of the amount of computation until
overlay packets are examined at a particular protocol stack.
This prevents effective load balancing on packet processing in
the VM. In addition, virtualizing network IO at the VM level
incurs increasing overhead as data rate increases. Thus, the
aggregate CPU demand of virtualized I/O and overlay packet
processing in the VM can exceed the capacity of one CPU,
causing queuing delays on overlay packets and throughput loss.
This also explains the overlay throughput loss in the UDP test.

Network Protocol Existing studies [26], [31] have demon-
strated that it is important to select the appropriate network
protocol to achieve desired quality-of-service (QoS). Figure 5
and 6 show that container networks performed differently
under TCP and UDP. Overall, TCP achieved higher throughput
than UDP did in all networks, including the baseline. TCP
implements two mechanisms to efficiently utilize the physi-
cal link. First, the sliding window protocol avoids network
congestion by dynamically adjusting the data sending rate.
Second, TCP employs Nagles algorithm to combine small
packets into bigger ones to improve link efficiency. Instead of
transmitting a packet immediately after receiving it from user
space, packets will be stored in a sending buffer in the kernel
and sent out as one packet once the buffer is full. It is often
advised that TCP is more desirable than UDP due to reliable
transmission and optimized throughput. However, container
networks in VMs present a new challenge in selecting a
network protocol. As shown in Figure 5 and Figure 6, all
inter-host container networks except the host mode incurred
much higher throughput loss to TCP than that to UDP. For
a representative 256-byte packet size [27], NAT and Calico
(BGP) suffered 36% and 39% TCP throughput loss compared
to the baseline, respectively, while overlay networks averaged
an 82% TCP throughput loss. In comparison, NAT caused
24% loss and Calico (BGP) even outperformed the baseline
under UDP. The average loss due to overlays was also much
lower, averaging at 38%. As the acknowledgements in TCP
involve more operations and CPU consumptions, the inter-host
container networks incur more overhead to TCP than to UDP.

Impact of virtualization Containers can be deployed in
VMs as well as on physical machines (PMs). There are
four types of container deployment: (1) containers on the
same PM; (2) containers in different VMs on the same PM;
(3) containers on different PMs; (4) containers on different
VMs on different PMs. So far, we have studied case (1)

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

160
140 -------- 16 Bytes(PM) == 1024 Bytes(PM) ==
120 16 Bytes(VM) 1024 Bytes(VM) &3

100 -
80 [S - 1< R T N EEPEE | EEERE N SR
60 [S 1 N R SRS N SETEE | EEERE N SR
40 |- ’

20 —
%0 COntaionZ':'”ode L ef ‘°Ver/l;zvfa'/e anne Alico(, IPaj'CO(BGp)

TCP throughput (MBps)

Fig. 7: Container network performance in PMs and VMs.

and (2). In this evaluation, we deploy container networks in
case (3) and (4). We compare the performance of container
networks using Sockperf in PMs and VMs, and show the
results in Figure 7. For small packets which did not saturate
the bandwidth, both hardware virtualization [29] and container
network caused some throughput loss. For example, compared
to the performance on physical machine, the TCP throughput
of Sockperf executed directly in VMs and with Docker overlay
networks in VMs degraded by 42% and 50.3%, respectively.
The colocation of container networks and the virtualized
network stack in VMs exacerbated the performance drop. This
phenomenon is much more obvious for large packets. As
shown in Figure 7, all the networks saturated the physical
bandwidth when exeucting on the bare-metal using 1024-byte
packets and deploying container networks on PMs caused
marginal throughput loss. Similar with the small size packets,
the multiple layer network virtualization introduced by VMs
and container networks incurred drastic performance drop,
especially in overlay networks.

Interference Due to low overhead, containers are often de-
ployed in an environment with a high consolidation ratio.
As container networking is a critical service to the container
infrastructure, it is interesting to study how it responds to
interference. We created a controlled environment to emulate
interference from co-located containers in the same VM. We
simulated two types of interference in the 4-vCPU, 4GB
server VM: a) five containers, each executing a busy loop, to
emulate workloads with persistent demand; b) five containers,
each running a program periodically demanding 10% CPU, to
emulate frequent container launch and termination. Figure 8
shows the impact of interferences on Sockperf TCP through-
put. Compared to throughput without interferences, all cases,
including the baseline, suffered TCP throughput loss under
interference. This is because the server process in the bench-
mark was affected by the contending containers and received
less CPU allocation. Likewise, container networks usually
include a user space daemon for managing network flows and
an in-kernel component for routing or packet encapsulation.
The user space daemon is susceptible to slowdown due to
interference while the kernel component is resilient to the
influence as in-kernel processing has a strictly higher priority
than any user-level computation. For example, both the host
mode, which processes packets using the in-kernel network
stack in the host OS, and Calico (BGP), which implements
a in-kernel virtual router, were able to achieve performance
close to the baseline as the container networking service was
not affected by interference. In contrast, third-party overlays
with user space daemons suffered most from interference. The
experiments suggest that in a highly consolidated environment
it is desirable to isolate container network services from other

195

. 180
2 160 [~ wio container == def-overlay == calico(IPIP) =
L 40 |- host-mode == weave 3 calico(BGP) ==
S 120k NAT == flannel =3
=
S 100 [—-------ree e
Q@ B0
_g 60 [------o-- - .-
P e) S DR .-
O 20 -----1 S i N |- -
oo
100% CPU 10% CPU w/o
workload workload interference

Fig. 8: Container network performance under interferences.

user container workloads or implement such services in the
host OS kernel.

CPU overhead To evaluate the CPU overhead of various
container networks, we created two one-vCPU, 4GB memory
VMs on two PMs. We used Netperf UDP_RR to measure
CPU utilization. The client and server side containers were
configured as the same type of networking. Table V shows the
CPU utilization and service demand of the client and server
containers in various multi-host networks. Due to the reason
that the transaction rate cannot be measured by Netperf for
NAT, its results were not included in the table. The CPU
utilization includes the time spent in user space, kernel space
and waiting for I/O. It is measured in percentage. The service
demand is the wall-clock time to complete one transaction
in UDP_RR. Among the networks, the host mode consumed
a similar level of CPU compared to the w/o container case.
Calico (BGP mode) incurred more CPU overhead as it involves
additional computation in the virtual router. All overlay net-
works consumed much more CPU due to packet encapsulation
and decapsulation. The service demands show the cost of
container networks at the request level. Similar to the trend in
CPU consumption, networks that consumed more CPU, took
a longer time to complete one transaction.

Scalability Many applications are composed of multiple com-
ponents and are ideal use cases of containerization. For ex-
ample, web services often consist of in-memory caches, load
balancers, and backend databases. Big data frameworks, such
as YARN, launch a large number of containers to parallelize a
single job. Therefore, it is worth investigating the performance
of concurrent communications between multiple containers.
The all-to-all communication in the MapReduce shuffle phase
is such an example. We used the osu_alltoall program in
the OSU benchmarks to test all-to-all communication latency
as the container network scales. The packet size was set to
1024 bytes and two VMs, each with 8 vCPUs and 4GB
memory, were used to host containers. Figure 9 (a) shows
the scalability of container networks in a single VM. We only
tested the default bridge mode as it is the default as well as the
basis for multi-host networks. While the baseline was to run
the MPI program directly in the VM, the w/ container case ran
MPI processes in separate containers. As shown in Figure 9
(a), the latency in the bridge mode network sharply increased
as the number of containers increased. In comparison, the
baseline scaled well with an increasing number of processes. It
clearly shows that the centralized bridge docker0 became the
bottleneck when multiple containers connected to the bridge.

Figure 9 (b) and 9 (c) show the latency of container
networks in multiple VMs. We evaluated two container dis-
tributions in two VMs. In Figure 9 (b), we fixed one container

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

(a) Containers on a single VM

(b) Containers on multi VMs (1:N-1)

(c) Containers on multi VMs (N/2:N/2)

2 80 2 1000 2 1400

2 70 w/o Container -©- - - 3 800 w/o Container -©- _ z 1200 w/o Container - -

= 60 w/ Container ¢ - = w/ Container —>¢ S 1000 w/ Container —>=

g 0 -oooe g 600 ------------oo- T 800

= - = =

T B0 T 400 [—--- s P 3 igg

R A S 200l 2 =

LI [\ SRR S D S S 200

T 0 T 0 | [T 0

= 2 3 4 5 6 7 8 = 2 3 5 6 7 8 = 2 3 4 5 6 7 8
Number of containers or processes Number of containers or processes Number of containers or processes
Fig. 9: Scalability of containers in single or multiple hosts. Here N denotes the number of containers.

[Network [CPU(© [CPU(s) | Sdem(c) [S.dem(s) | [Single host [Launch time [Multiple hosts | Launch time |

w/o container 33.37 18.41 75.466 41.626 None 539.6 ms Host 497.4 ms
Host mode 34.19 22.04 82.403 53.127 Bridge 663.1 ms NAT 674.5 ms
Def Overlay 38.75 4291 95.867 106.145 Container 239.4 ms Docker Overlay 10,979.8 ms

Weave 54.92 47.56 150.678 130.478 Host 497.4 ms Weave 2,365.2 ms
Flannel 42.96 40.44 127.118 119.659 / / Flannel 3,970.3 ms

Calico(IPIP) 38.53 40.53 107.854 113.465 / / Calico(IPIP) 11,373.1 ms

Calico(BGP) 37.72 36.92 99.665 95.035 / / Calico(BGP) 11,335.2 ms

TABLE V: CPU utilization and service demands (CPU time
consumed per unit of work) of different container networks.
Here (c) and (s) denote the client and server side.

or process to a VM and placed all the other containers or
processes onto the other VM. In Figure 9 (c), we placed an
equal number of containers or processes on each VM. When
the number of containers or processes are not divisible by
2, we rounded up to the nearest integer. Containers residing
on the same VM communicated using the bridge mode and
those on different VMs went through the overlay. We used
the Docker native overlay for inter-VM communication. As
Figure 9 depicts, we had several observations. First, the all-
to-all latency across VMs was 10-fold higher than that in a
single VM, suggesting that cross-VM latency was the culprit.
The latency in the container network was higher than that in
w/o container. As shown in Figure 9 (c), when more cross-
VM communications were carried out through the overlay, the
performance gap between w/ container and w/o container be-
came wider as the number of containers increased. It suggests
that the cross-VM overlay is the major bottleneck for scaling.
The experiments provide insights on container placement. It is
more desirable to pack communicating containers on the same
host to avoid high communication cost in the overlay network.

Network launch time The time to establish a container
network is critical to the short-lived or latency-sensitive work-
loads. We use the startup time of a none mode container as
the baseline. Table VI lists the launch time of containers con-
figured with various networks. The launch time was measured
as the time between a container create command was issued
and the container is responsive to network a ping request. The
measurements were taken in a warmed-up system and were
the average of ten runs. On a single host, all networks can
be started with a latency similar to a docker image startup
time except that the container mode unexpectedly accelerated
the boot time. This is due to the fact that the proxy container
has already initiated a network namespace and connecting an
additional container to the proxy becomes cheaper than starting
a new container.

On multiple hosts, the startup time of the host mode and

196

TABLE VI: The launch time of different networks

NAT were comparable to that in a single host. However,
launching an overlay or initializing the BGP routing tables
took 4.5X to 23X longer than the original docker image startup
time. For example, starting a Docker overlay took more than
10 seconds and most of the time was spent in registering the
container with the KV store. Calico (BGP) was also slow
to start as it took several seconds to propagate the routing
table. Users should take the diverse startup latency of different
networks into consideration to select the appropriate network
to meet applications’ latency requirements.

V. RELATED WORK

Container network standard As containers are widely
adopted in many fields and the scale of containerized appli-
cations continues to grow, there is a need for a standardized
container network specification. Currently, there exist two stan-
dards for the container network interface. Container Network
Model (CNM) is an official standard proposed by Docker,
which is composed of modules such as sandbox, network and
endpoints. CNM has been adopted by VMWare, Weave, etc.
Container Network Interface (CNI) is a community standard
proposed by Google and CoreOS for universal container
network. Different from CNM, the design of CNI is more
concise and flexible to use. CNI is supported by Apache
Mesos, Kubernetes, etc. Many open source projects, such as
Calico, support both two standards at the same time.

Container network optimization With the increasing pop-
ularity of containers, a growing number of studies start to
focus on addressing inefficient networking in containers. Hu
et al. [23] characterized typical NFV workloads in containers
and observed that the shared network stack in the host OS
was the main bottleneck. They proposed NetContainer, a soft-
ware framework that achieved fine-grained hardware resource
management for containerized NFV platform. To address poor
performance in container network, Yu et al. [33] proposed
FreeFlow, which used shared memory and RDMA to realize
high throughput, low latency network among containers. There
also exist many explorations in the industry, such as the

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

integration of Docker with SR-IOV or DPDK [5], to accelerate
container networks. Those studies are orthogonal to our work.

VI. INSIGHTS AND CONCLUSION

Insights To determine the appropriate network for a container
workload is challenging. It requires the consideration of many
factors. If users run containers on a single host, they need to
balance the tradeoffs between performance, security, and isola-
tion. If security and isolation are paramount, the bridge mode is
the best option. If containers need to frequently communicate
with each other and some containers need to access other
containers’ namespace for monitoring and management, the
container mode should be the choice. The host mode delivers
near-native performance, though not providing any isolation.
If users build containers network across multiple hosts, Calico
(BGP mode) is the best option from the performance perspec-
tive. NAT is the secondary choice if BGP is not supported in
the architecture. All overlay networks perform similarly and
introduce considerable overhead. Overlay network is best for
workloads that do not require high network performance but
have a frequently changing topology.

Besides the performance of container networks, the charac-
teristics of the workloads also play an important role in choos-
ing the appropriate network. For workloads communicating
using small packets, e.g., messaging service, all the multiple
hosts solutions perform similarly. For workloads with bulk
transfer, Calico (BGP mode) achieves the better performance.
In addition, container networks incur much larger overhead to
TCP than to UDP workloads. Virtualization also introduces
additional network overhead for containers, especially for
overlay networks.

In order to improve the performance of container networks,
the respective bottleneck in different container networks should
be addressed. The shared network stack in the host OS,
the centralized bridge docker0, software routing in Weave
and Calico, and packet encapsulation and decapsulation in
overlay networks could become the bottleneck for a particular
workload. To improve container network on a single host,
communications should be performed through shared memory
when possible and avoid packet copying between user space
and kernel space as much as possible. To improve container
networks across multiple hosts, the expensive packet encapsu-
lation and decapsulation operations can be accelerated through
hardware offloading. As discussed in Section IV, there exist
many factors influencing the network performance and it is
challenging to select the right network. Techniques such as
machine learning [30] can be used for the automate container
network selection.

Conclusion In this paper, we present a detailed analysis of
container networks on a single host and on multiple hosts. We
perform a comprehensive empirical study of various container
networks in a virtualized environment. To the best of our
knowledge, this paper is the first to explore the many aspects
of container networks. We have important findings that could
help user select the appropriate network for their workloads
and guide the optimization of existing container networks.

ACKNOWLEDGEMENT

This work was supported in part by U.S. NSF grants CNS-
1649502 and IIS-1633753.

197

(1]
(2]
(3]
(4]
(51
(6]
(71
(8]
(91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
(17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

REFERENCES

Calico. https://github.com/projectcalico/calico-containers.

Containers: The Future of Virtualization & SDDC.
Mb3yFq.
Docker. https://www.docker.com/.

https://goo.gl/

Docker Swarm. https://docs.docker.com/engine/swarm/.

DPDK. http://dpdk.org/.

etcd. https://github.com/coreos/etcd.

Flannel. https://github.com/coreos/flannel/.

Libky. https://github.com/docker/libkv.

Libnetwork. https://github.com/docker/libnetwork.

NaCl: Networking and Cryptography library. http://nacl.cr.yp.to/ec2/.
Netperf. http://www.netperf.org/.

OSU benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.
Sockperf. https://github.com/Mellanox/sockperf.

Sparkyfish. https://github.com/chrissnell/sparkyfish.

Stream. https://www.cs.virginia.edu/stream/.

The Truth about Docker Container Lifecycles. https://goo.gl/Wcj894.
Weave. https://github.com/weaveworks/weave.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, et al. Scone:

Secure linux containers with intel sgx. In Proceedings of USENIX
OSDI, 2016.

B. Burns and D. Oppenheimer. Design patterns for container-based
distributed systems. In Proceedings of USENIX HotCloud, 2016.

R. Dua, A. R. Raja, and D. Kakadia. Virtualization vs containerization
to support paas. In Proceedings of IEEE IC2E, 2014.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated
performance comparison of virtual machines and linux containers. In
Proceedings of IEEE ISPASS, 2015.

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Serverless computation
with openlambda. In Proceedings USENIX HotCloud, 2016.

Y. Hu, M. Song, and T. Li. Towards full containerization in container-
ized network function virtualization. In Proceedings of ASPLOS, 2017.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici. Clickos and the art of network function virtualization. In
Proceedings of USENIX NSDI, 2014.

A. Panda, M. Sagiv, and S. Shenker. Verification in the age of
microservices. In Proceedings of USENIX HotOS, 2017.

K. K. Ram, I. C. Fedeli, A. L. Cox, and S. Rixner. Explaining the
impact of network transport protocols on sip proxy performance. In
Proceedings of IEEE ISPASS, 2008.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside
the social network’s (datacenter) network. In Proceedings of ACM
SIGCOMM, 2015.

P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay. Containers and
virtual machines at scale: A comparative study. In Proceedings of ACM
Middleware, 2016.

R. Shea and J. Liu. Network interface virtualization: challenges and
solutions. IEEE Network, 2012.

D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database
management system tuning through large-scale machine learning. In
Proceedings of ACM SIGMOD, 2017.

G. Xylomenos and G. C. Polyzos. Tcp and udp performance over a
wireless lan. In Proceedings of IEEE INFOCOM, 1999.

M. Yanga, Y. Huanga, J. Kimb, M. Leec, T. Sudaa, and M. Daisuked. An
end-to-end qos framework with on-demand bandwidth reconfiguration.
In Proceedings of IEEE INFOCOM, 2004.

T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar.
Freeflow: High performance container networking. In Proceedings of
ACM HotNet, 2016.

L. Zhang, J. Litton, F. Cangialosi, T. Benson, D. Levin, and A. Mislove.
Picocenter: Supporting long-lived, mostly-idle applications in cloud
environments. In Proceedings of ACM EuroSys, 2016.

